RECUPERACIÓN NOVENO STJ


FACTORIZACIÓN






Ecuación Cuadrática

Definiciones web
  1. Una ecuación de segundo grado o ecuación cuadrática de una variable es una ecuación que tiene la forma de una suma algebraica de términos cuyo grado máximo es dos, es decir, una ecuación cuadrática puede ser representada por un polinomio de segundo grado o polinomio cuadrático cuya ecuación general es y=ax²+bx+c, donde a, b y c son números reales y a ≠0 (de lo contrario no sería ecuación de segundo grado).
    La parábola es la gráfica de la función cuadrática o polinomio de segundo grado.
    parabola
    Una parábola cuyo vértice está en el origen y su eje coincide con el eje de las ordenadas (Eje Y), tiene una ecuación de la forma y = ax² donde el parámetro a especifica la escala de la parábola.
    Todas las ecuaciones de la forma y=ax² con a>0, corresponden a parábolas que se abren hacía arriba. El vértice es (0,0)
    Todas las ecuaciones de la forma y=ax² con a0, corresponden a parábolas que se abren hacía arriba. El vértice es (0,c)
    Todas las ecuaciones de la forma y=ax²+c con a0, corresponden a parábolas que se abren hacía arriba. El vértice es (-b/2a, (4ac-b²)/4a)
    Todas las ecuaciones de la forma y=ax²+bx+c con a<0, corresponden a parábolas que se abren hacía abajo. El vértice es (-b/2a, (4ac-b²)/4a)
    Da clic en el siguiente Link para saber más.
    Más sobre la parábola.



Graficar la parábola y=x²+2x+1


Técnicas de conteo

Compañeros, estudien estos temas que aparecen en los siguientes Links:
Sí es posible reproduzcan éste material.
Da clic.
Técnicas de Conteo

El principio fundamental en el proceso de contar ofrece un método general para contar el numero de posibles arreglos de objetos dentro de un solo conjunto o entre carios conjuntos. Las técnicas de conteo son aquellas que son usadas para enumerar eventos difíciles de cuantificar.

Si un evento A puede ocurrir de n1 maneras y una vez que este ha ocurrido, otro evento B puede n2 maneras diferentes entonces, el número total de formas diferentes en que ambos eventos pueden ocurrir en el orden indicado, es igual a n1 x n2.

¿De cuántas maneras pueden repartirse 3 premios a un conjunto de 10 personas, suponiendo que cada persona no puede obtener más de un premio?

Aplicando el principio fundamental del conteo, tenemos 10 personas que pueden recibir el primer
premio. Una vez que éste ha sido entregado, restan 9 personas para recibir el segundo, y
posteriormente quedarán 8 personas para el tercer premio. De ahí que el número de maneras
distintas de repartir los tres premios.

n
10 x 9 x 8 = 720

¿Cuántas placas de automóvil se pueden hacer utilizando dos letras seguidas de tres cifras? No se
admiten repeticiones.

26 x 25 x 10 x 9 x 8 = 468000

n un número entero positivo, el producto n (n-1) (n-2)…3 x 2 x 1 se llama factorial de n.
El símbolo ! se lee factorial y es el producto resultante de todos los enteros positivos de 1 a n; es decir, sea
n
5! = 5 x 4 x 3 x 2 x 1 = 120
Por definición 0! = 1

Si el número de posibles resultados de un experimento es pequeño, es relativamente fácil listar y contar todos los posibles resultados. Al tirar un dado, por ejemplo, hay seis posibles resultados.

Si, sin embargo, hay un gran número de posibles resultados tales como el número de niños y niñas por familias con cinco hijos, sería tedioso listar y contar todas las posibilidades. Las posibilidades serían, 5 niños, 4 niños y 1 niña, 3 niños y 2 niñas, 2 niños y 3 niñas, etc.

Para facilitar el conteo examinaremos tres técnicas:

* La técnica de la multiplicación
* La tecnica aditiva
* La tecnica de la suma o Adicion
* La técnica de la permutación
* La técnica de la combinación.

PRINCIPIO DE LA MULTIPLICACION

Si se desea realizar una actividad que consta de r pasos, en donde el primer paso de la actividad a realizar puede ser llevado a cabo de N1 maneras o formas, el segundo paso de N2 maneras o formas y el r-ésimo paso de Nr maneras o formas, entonces esta actividad puede ser llevada a efecto de. El principio multiplicativo implica que cada uno de los pasos de la actividad deben ser llevados a efecto, uno tras otro. Si un evento E1 puede suceder de n1 maneras diferentes, el evento E2 puede ocurrir de n2 maneras diferentes, y así sucesivamente hasta el evento Ep el cual puede ocurrir de np maneras diferentes, entonces el total de maneras distintas en que puede suceder el evento “ocurren E1 y E2…..y Ep” es igual a producto.


N1 x N2 x ……….x Nr maneras o formas
Ejemplo:
Se dispone de 3 vías para viajar de C1 a C2 y de 4 vías para viajar de C2 a C1. ¿De cuántas formas se puede organizar el viaje de ida y vuelta de C1 a C2.Respuesta: (3)(4)=12

PRINCIPIO ADITIVO.

Si se desea llevar a efecto una actividad, la cuál tiene formas alternativas para ser realizada, donde la primera de esas alternativas puede ser realizada de M maneras o formas, la segunda alternativa puede realizarse de N maneras o formas ….. y la última de las alternativas puede ser realizada de W maneras o formas, entonces esa actividad puede ser llevada a cabo de,

M + N + ………+ W maneras o formas

Ejemplos:
1) Una persona desea comprar una lavadora de ropa, para lo cuál ha pensado que puede seleccionar de entre las marcas Whirpool, Easy y General Electric, cuando acude a hacer la compra se encuentra que la lavadora de la marca W se presenta en dos tipos de carga ( 8 u 11 kilogramos), en cuatro colores diferentes y puede ser automática o semiautomática, mientras que la lavadora de la marca E, se presenta en tres tipos de carga (8, 11 o 15 kilogramos), en dos colores diferentes y puede ser automática o semiautomática y la lavadora de la marca GE, se presenta en solo un tipo de carga, que es de 11 kilogramos, dos colores diferentes y solo hay semiautomática. ¿Cuántas maneras tiene esta persona de comprar una lavadora?

Solución:

M = Número de maneras de seleccionar una lavadora Whirpool
N = Número de maneras de seleccionar una lavadora de la marca Easy
W = Número de maneras de seleccionar una lavadora de la marca General Electric

M = 2 x 4 x 2 = 16 maneras
N = 3 x 2 x 2 = 12 maneras

W = 1 x 2 x 1 = 2 maneras

M + N + W = 16 + 12 + 2 = 30 maneras de seleccionar una lavadora

PRINCIPIO DE LA SUMA O ADICCION
Si una primera operación puede realizarse de m maneras y una segunda operación de n maneras, entonces una operación o la otra pueden efectuarse de:
m+n maneras.

Ejemplo:
Una pareja que se tiene que casar, junta dinero para el enganche de su casa, en el fraccionamiento lomas de la presa le ofrecen un modelo económico ó un condominio, en el fraccionamiento Playas le ofrecen un modelo económico como modelos un residencial, un californiano y un provenzal. ¿Cuántas alternativas diferentes de vivienda le ofrecen a la pareja?

PRESA PLAYAS
Económico Residencial
Condominio Californiano
Provenzal
m=2 n=3

2+3= 5 maneras

PRINCIPIO DE PERMUTACION:

A diferencia de la formula de la multiplicación, se la utiliza para determinar el numero de posibles arreglos cuando solo hay un solo grupo de objetos. Permutación: un arreglos o posición de r objetos seleccionados de un solo grupo de n objetos posibles. Si nos damos cuenta los arreglos a, b, c y b, a, c son permutaciones diferentes, la formula que se utiliza para contar el numero total de permutaciones distintas es:

FÓRMULA: n P r = n! (n – r)

Ejemplo: ¿Como se puede designar los cuatro primeros lugares de un concurso, donde existen 15 participantes?
Aplicando la formula de la permutación tenemos:

n P r = n! (n – r)! = 15! = 15*14*13*12 *11*10*9*8*7*6*5*4*3*2*1 (15-4)! 11*10*9*8*7*6*5*4*3*2*1 = 32760

Donde: n= número total de objetos r= número de objetos seleccionados!= factorial, producto de los números naturales entre 1 y n.
NOTA: se puede cancelar números cuando se tiene las mismas cifras en numerador y denominador. !

PRINCIPIO DE COMBINACION:

En una permutación, el orden de los objetos de cada posible resultado es diferente. Si el orden de los objetos no es importante, cada uno de estos resultados se denomina combinación. Por ejemplo, si se quiere formar un equipo de trabajo formado por 2 personas seleccionadas de un grupo de tres (A, B y C). Si en el equipo hay dos funciones diferentes, entonces si importa el orden, los resultados serán permutaciones. Por el contrario si en el equipo no hay funciones definidas, entonces no importa el orden y los resultados serán combinaciones. Los resultados en ambos casos son los siguientes:
Permutaciones: AB, AC, BA, CA, BC, CB
Combinaciones: AB, AC, BC

Combinaciones: Es el número de formas de seleccionar r objetos de un grupo de n objetos sin importar el orden.
La fórmula de combinaciones es:

n C r = n! r! (n – r)!

Ejemplo: En una compañía se quiere establecer un código de colores para identificar cada una de las 42 partes de un producto. Se quiere marcar con 3 colores de un total de 7 cada una de las partes, de tal suerte que cada una tenga una combinación de 3 colores diferentes. ¿Será adecuado este código de colores para identificar las 42 partes del producto?
Usando la fórmula de combinaciones:
n C r = n! = 7! = 7! = 35
r! (n – r )! 3! (7 – 3)! 3! 4!

El tomar tres colores de 7 posibles no es suficiente para identificar las 42 partes del producto.

Estas son una pagina interactiva interesantes, que les puede ser muy util para el mejor entendimiento de las Tecnicas de Conteo:

http://portal.perueduca.edu.pe/modulos/mod_matconteo/mod_4publish/index.html
http://cibermath.com/cuarto/principios-fundamentales-de-conteo.htm

Tomado de:
http://probabilidadestadistic.blogspot.com.co/2010/09/tecnicas-de-conteo.html


FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

Da clic: Función Exponencial.


GEOMETRÍA ANALÍTICA (10)

Compañeros Ciclo V A-B-C. Deben consignar en su cuaderno todo lo relacionado con la Geometría Analítica, y realizar los ejemplos del primer vídeo (Distancia entre dos puntos, Punto medio, Ecuación de la recta). Deben ver todos los vídeos de Geometría Analítica.¡Éxitos!
Recuerden que más abajo se encuentra un problema de ejemplo del tema anterior, Teoremas del Seno y del Coseno, para que terminen el taller.

Geometría analítica, rama de la geometría en la que las líneas rectas, las curvas y las figuras geométricas se representan mediante expresiones algebraicas y numéricas usando un conjunto de ejes y coordenadas. Cualquier punto del plano se puede localizar con respecto a un par de ejes perpendiculares dando las distancias del punto a cada uno de los ejes. En la figura 1, el punto A está a 1 unidad del eje vertical (y) y a 4 unidades del horizontal (x). Las coordenadas del punto A son por tanto 1 y 4, y el punto queda fijado dando las expresiones x = 1, y = 4. Los valores positivos de x están situados a la derecha del eje y, y los negativos a la izquierda; los valores positivos de y están por encima del eje x y los negativos por debajo. Así, el punto B de la figura 1 tiene por coordenadas x = 5, y = 0. En un espacio tridimensional, los puntos se pueden localizar de manera similar utilizando tres ejes, el tercero de los cuales, normalmente llamado z, es perpendicular a los otros dos en el punto de intersección, también llamado origen.



Punto Medio

Circunferencia



APLICACIONES DE LOS TEOREMAS DEL SENO Y DEL COSENO